Power Systems Control

\( \newcommand{\states}{\mathcal{S}} \newcommand{\actions}{\mathcal{A}} \newcommand{\observations}{\mathcal{O}} \newcommand{\rewards}{\mathcal{R}} \newcommand{\traces}{\mathbf{e}} \newcommand{\transition}{P} \newcommand{\reals}{\mathbb{R}} \newcommand{\naturals}{\mathbb{N}} \newcommand{\complexs}{\mathbb{C}} \newcommand{\field}{\mathbb{F}} \newcommand{\numfield}{\mathbb{F}} \newcommand{\expected}{\mathbb{E}} \newcommand{\var}{\mathbb{V}} \newcommand{\by}{\times} \newcommand{\partialderiv}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\defineq}{\stackrel{{\tiny\mbox{def}}}{=}} \newcommand{\defeq}{\stackrel{{\tiny\mbox{def}}}{=}} \newcommand{\eye}{\Imat} \newcommand{\hadamard}{\odot} \newcommand{\trans}{\top} \newcommand{\inv}{{-1}} \newcommand{\argmax}{\operatorname{argmax}} \newcommand{\Prob}{\mathbb{P}} \newcommand{\avec}{\mathbf{a}} \newcommand{\bvec}{\mathbf{b}} \newcommand{\cvec}{\mathbf{c}} \newcommand{\dvec}{\mathbf{d}} \newcommand{\evec}{\mathbf{e}} \newcommand{\fvec}{\mathbf{f}} \newcommand{\gvec}{\mathbf{g}} \newcommand{\hvec}{\mathbf{h}} \newcommand{\ivec}{\mathbf{i}} \newcommand{\jvec}{\mathbf{j}} \newcommand{\kvec}{\mathbf{k}} \newcommand{\lvec}{\mathbf{l}} \newcommand{\mvec}{\mathbf{m}} \newcommand{\nvec}{\mathbf{n}} \newcommand{\ovec}{\mathbf{o}} \newcommand{\pvec}{\mathbf{p}} \newcommand{\qvec}{\mathbf{q}} \newcommand{\rvec}{\mathbf{r}} \newcommand{\svec}{\mathbf{s}} \newcommand{\tvec}{\mathbf{t}} \newcommand{\uvec}{\mathbf{u}} \newcommand{\vvec}{\mathbf{v}} \newcommand{\wvec}{\mathbf{w}} \newcommand{\xvec}{\mathbf{x}} \newcommand{\yvec}{\mathbf{y}} \newcommand{\zvec}{\mathbf{z}} \newcommand{\Amat}{\mathbf{A}} \newcommand{\Bmat}{\mathbf{B}} \newcommand{\Cmat}{\mathbf{C}} \newcommand{\Dmat}{\mathbf{D}} \newcommand{\Emat}{\mathbf{E}} \newcommand{\Fmat}{\mathbf{F}} \newcommand{\Gmat}{\mathbf{G}} \newcommand{\Hmat}{\mathbf{H}} \newcommand{\Imat}{\mathbf{I}} \newcommand{\Jmat}{\mathbf{J}} \newcommand{\Kmat}{\mathbf{K}} \newcommand{\Lmat}{\mathbf{L}} \newcommand{\Mmat}{\mathbf{M}} \newcommand{\Nmat}{\mathbf{N}} \newcommand{\Omat}{\mathbf{O}} \newcommand{\Pmat}{\mathbf{P}} \newcommand{\Qmat}{\mathbf{Q}} \newcommand{\Rmat}{\mathbf{R}} \newcommand{\Smat}{\mathbf{S}} \newcommand{\Tmat}{\mathbf{T}} \newcommand{\Umat}{\mathbf{U}} \newcommand{\Vmat}{\mathbf{V}} \newcommand{\Wmat}{\mathbf{W}} \newcommand{\Xmat}{\mathbf{X}} \newcommand{\Ymat}{\mathbf{Y}} \newcommand{\Zmat}{\mathbf{Z}} \newcommand{\Sigmamat}{\boldsymbol{\Sigma}} \newcommand{\identity}{\Imat} \newcommand{\epsilonvec}{\boldsymbol{\epsilon}} \newcommand{\thetavec}{\boldsymbol{\theta}} \newcommand{\phivec}{\boldsymbol{\phi}} \newcommand{\muvec}{\boldsymbol{\mu}} \newcommand{\sigmavec}{\boldsymbol{\sigma}} \newcommand{\jacobian}{\mathbf{J}} \newcommand{\ind}{\perp!!!!\perp} \newcommand{\bigoh}{\text{O}} \)

Projects

Questions

Notes/Literature

Common terms

  • Distributed Generation Units
  • Energy Storage Systems
  • Point of Common Coupling
  • Voltage Source Converters
  • Swing Equation

Microgrid Control

A microgrid can be though of a cluster of loads, Distributed Generation Units and Energy Storage Systems operated in coordination to reliably supply electricty, connected to the host power system at the distribution level at a single point of connection, i.e. the Point of Common Coupling.

  • Some links

    • An example model of a small scale microgrid: link

TODO (Dommel 1969)

Problem Settings/Use Cases

  • Power Flow
  • Optimal Power Flow
  • Co-Simulation

    Joint simulation of loosely coupled stand-alone sub-simulators

Examples/Benchmarks

The North Sea Wind Power Hub

Depicted below, this model represents a realistic example of an emerging converter-dominated system that must integrate securely into the legacy bulk power grid. The objective is to optimally tune the control parameters and determine the power dispatch of the NSWPH system under small-signal stability and N-1 security constraints.

The below figure depicts:

  • 5 wind farms,
  • a synchronous condenser,
  • and two HVDC Voltage Source Converters

When planning dispatch of the system, operators are assumed to have control over the active and reactive power set points of the turbines. In the future, operators may also depend on the wind hubs to provide both primary frequency and primary voltage control support services. We assume operators have the capacity to adjust the droop parameters which determine the system’s participation in both primary frequency and primary voltage control.

Single Machine Infinite Bus system

This is an extremely simple power bus with a single generator and infinite external grid which has a constant draw of power without a shift in voltage or angle (very idealized system).

4-Bus 2-Generator System

Described in (Stiasny, Misyris, and Chatzivasileiadis 2021). With governing dynamics \[ m_k \ddot{\delta}_k + d_k \dot{\delta}_k + \sum_j B_{kj} V_k V_j \text{sin}(\delta_k - \delta_j) - P_k = 0 \]

Kundur Two-area system

First came across in (Stiasny, Misyris, and Chatzivasileiadis 2023). Originally described in https://www.taylorfrancis.com/chapters/edit/10.4324/b12113-10/power-system-stability-prabha-kundur.

Governing equations:

\begin{align} \dot{\delta}_i &= \omega_i - \omega_0 \\ \dot{\omega}_i &= \frac{\omega_0}{2H_i} \left ( P_i^{\text{set}} + \Delta P_i - \sum_j \frac{V_i V_j}{X_{ij}} \sin(\delta_i - \delta_j) \right ) \\ \dot{\delta}_i &= \frac{1}{D_i} \left ( P_i^{\text{set}} + \Delta P_i - \sum_j \frac{V_i V_j}{X_{ij}} \sin(\delta_i - \delta_j) \right ) \end{align}

IEEE Bus Systems

  • IEEE 14 Bus System
  • IEEE 33 Bus System
  • IEEE 118 Bus System

PanTaGruEl

A simulation of the European power grid

References

Dommel, Hermann W. 1969. “Digital Computer Solution of Electromagnetic Transients in Single-and Multiphase Networks.” IEEE Transactions on Power Apparatus and Systems PAS-88 (4): 388–99. doi:10.1109/TPAS.1969.292459.
Olivares, Daniel E., Ali Mehrizi-Sani, Amir H. Etemadi, Claudio A. Cañizares, Reza Iravani, Mehrdad Kazerani, Amir H. Hajimiragha, et al. 2014. “Trends in Microgrid Control.” IEEE Transactions on Smart Grid 5 (4): 1905–19. doi:10.1109/TSG.2013.2295514.
Pagnier, Laurent, and Philippe Jacquod. 2019. “Inertia Location and Slow Network Modes Determine Disturbance Propagation in Large-Scale Power Grids.” Plos One 14 (3). Public Library of Science: e0213550. doi:10.1371/journal.pone.0213550.
Phadke, A.G. 2002. “Synchronized Phasor Measurements-a Historical Overview.” In IEEE/PES Transmission and Distribution Conference and Exhibition, 1:476–79 vol.1. doi:10.1109/TDC.2002.1178427.
Stiasny, Jochen, George S. Misyris, and Spyros Chatzivasileiadis. 2021. “Physics-Informed Neural Networks for Non-linear System Identification for Power System Dynamics.” In 2021 IEEE Madrid PowerTech, 1–6. doi:10.1109/PowerTech46648.2021.9495063.
Stiasny, Jochen, Georgios S. Misyris, and Spyros Chatzivasileiadis. 2023. “Transient Stability Analysis with Physics-Informed Neural Networks.” March 15. doi:10.48550/arXiv.2106.13638.
Tyloo, M., L. Pagnier, and P. Jacquod. 2019. “The Key Player Problem in Complex Oscillator Networks and Electric Power Grids: Resistance Centralities Identify Local Vulnerabilities.” Science Advances 5 (11). American Association for the Advancement of Science: eaaw8359. doi:10.1126/sciadv.aaw8359.
Zhang, Y., L. Wehenkel, P. Rousseaux, and M. Pavella. 1997. “SIME: A Hybrid Approach to Fast Transient Stability Assessment and Contingency Selection.” International Journal of Electrical Power & Energy Systems 19 (3): 195–208. doi:10.1016/S0142-0615(96)00047-6.
“New Technology Can Improve Electric Power System Efficiency and Reliability - U.S. Energy Information Administration (EIA).” 2025. Accessed April 28. https://www.eia.gov/todayinenergy/detail.php?id=5630.