
Predictions Predicting Predictions

Matthew K. Schlegel∗
Department of Computing Science

University of Alberta
mkschleg@ualberta.ca

Martha White
Department of Computing Science

University of Alberta
whitem@ualberta.ca

Abstract

Predicting the sensorimotor stream has consistently been a key component for building general learning agents. Whether
through predicting a reward signal to select the best action or learning a predictive world model with auxiliary tasks,
prediction making is at the core of reinforcement learning. One of the main research directions in predictive architectures
is in the automatic construction of learning objectives and targets. The agent can consider any real-valued signal as a
target when deciding what to learn, including the current set of internal predictions. A prediction whose learning target
is another prediction is known as a composition. Arbitrarily deep compositions can lead to learning objectives that are
unstable or not suitable for function approximators. This manuscript looks to begin uncovering the underlying structure
of compositions in an effort to leverage and learn them more effectively in general learning agents. Specifically, we
consider the dynamics of compositions both empirically and analytically. We derive the effective schedule of emphasis
(or discounts) of future observations with compositions of arbitrary depth, leading to informative observations about
the prediction targets. In the empirical simulations, we focus on the unintuitive behavior of compositions, especially in
cases that are not easy to analyze. Overall, predictions predicting predictions which predict predictions have interesting
properties and can add depth to an agent’s predictive understanding of the world.
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1 Introduction

Reinforcement learning is built on predicting the effect of behavior on future observations and rewards. Many of our
algorithms learn predictions of a cumulative sum of (discounted) future rewards, which is used as a bedrock for learn-
ing desirable policies. While reward has been the primary predictive target of focus, TD models (Sutton 1995) lay out
the use of temporal-difference learning to learn a world model through value function predictions. Temporal-difference
networks (Sutton and Tanner 2004) take advantage of this abstraction and build state and representations through predic-
tions. Sutton, Modayil, et al. 2011 and White 2015 further the predictive perspective by developing a predictive approach
to building world knowledge through general value functions (GVFs).

GVFs have been pursued broadly in reinforcement learning: Günther et al. 2016 used GVFs to build an open loop laser
welder controller, Linke et al. 2020 used predictions and their learning progress to develop an intrinsic reward, Edwards
et al. 2016 used GVFs to build controllers for myoelectric prosthetics, using gvfs for auxiliary training tasks to improve
representation learning (Jaderberg et al. 2017; Veeriah et al. 2019), to extend a value function’s approximation to general-
ize over goals as well as states (Schaul et al. 2015), and to create a scheduled controller from a set of sub-tasks for sparse
reward problems (Riedmiller et al. 2018). Successor representations and features are predictions of the state, learned or
given, which have been shown to improve learning performance (Barreto et al. 2018; Dayan 1993; Russek et al. 2017;
Sherstan et al. 2018).

Learning predictions of any real-valued signal the agent has access to also opens the possibility of asking compositional
predictive questions (White 2015). A compositional question is one whose target is dependent on another prediction
internal to the agent. Compositions expand the possible range of predictive questions we can specify as a GVF (Rafols
et al. 2006; Schlegel et al. 2021; Sutton and Tanner 2004; White 2015; Zheng et al. 2021). While this may suggest the
GVF framework is limited in what questions can be asked, the limitations are necessary so the predictions can be trained
independent of span (van Hasselt and Sutton 2015). Learning independent of span means the target can be learned us-
ing online algorithms regardless of the effective horizon of the prediction. Adding layers of compositional questions
have improved the learning in predictive representations (Rafols et al. 2006; Schlegel et al. 2021), and improved the per-
formance of deep reinforcement learning through auxiliary tasks (Zheng et al. 2021). In the automatic specification of
learning targets compositions are thought to provide a way for the agent to build complexity (Kearney 2022; Schlegel
et al. 2021; Veeriah et al. 2019; Zheng et al. 2021), but often these architectures don’t leverage compositions for stability
concerns (Schlegel et al. 2021).

As well as improving behavior empirically, compositions can provide semantic depth. An excellent example of this
can be seen in option-extended temporal difference networks (Rafols et al. 2006), and later explored again in Schlegel
et al. 2021. The example is centered in an environment where the agent has a low-powered visual sensor and needs
to learn its directionality from the painted walls. Each cardinal direction has a different colored wall. The first layer
of predictions the agent makes is to predict what color it will observe if it were to drive straight. The second layer are
myopic predictions which ask what the first layer’s prediction will be after turning clockwise (or counter-clockwise). The
second layer allows the agent to predict which walls are to its sides as well as the wall in the direction the agent is facing.
These predictions cannot be specified in the usual GVF framework, but can be easily constructed through compositions.
While this may be “repeated information” in a sense, the extra learning objectives makes the learning properties of the
predictive representation better as compared to other specifications (Schlegel et al. 2021).

As algorithms for the automatic discovery of complex question networks continue to push the boundaries of what ques-
tions are considered by the agent, the properties of compositions should be better studied. When searching for what to
learn the questions an agent eventually retains will be dependent on the agent’s ability to learn the predictions. While
it is clear questions that naturally diverge (say setting the discount γ = 1) should be avoided, other problems, such as
the scale of a target, could be equally as problematic when using function approximation (i.e. end-to-end neural net-
works). This could mean important predictions are disregarded because the agent is unable to learn the answer without
proper strategies to normalize the prediction’s magnitude. Better strategies for learning and normalizing predictive tar-
gets will come from understanding the effective discount schedule (or emphasis) compositional predictions will have on
the targets.

In this report, we consider the effect of compositions on the sequence of discounts, and relegate the effect of off-policy
importance weights to future work. We first analyze the sequence of discounts over any number of compositions and
constant discounts. We then analyze this sequence to better understand how it emphasizes parts of the data stream.
Surprisingly, the effective discount for constant discount compositions have a form which can be described analytically.
While this does not include the full spectrum of discount functions, it provides a first step towards understanding com-
positions. Next we look at simulations using more complex state-dependent discount functions using a simple consistent
sequence and two timeseries datasets. In these simulations we focus on the effect of applying the same discount function
a large number of times, looking to see if the shape of the returns become regular over the compositions. Finally, several
future directions and questions are posed.
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Figure 1: (left) The effective discount for n compositions normalized by the maximum value found in section 2. (middle,
right) The cycle world simulations, with top graph as the cumulant and subsequent plots n compositions with constant
and terminating discounts respectively.

2 Analyzing the sequence

In this section, we restrict to the setting where we have an infinite sequence of sensor readings x =
{x[0], x[1], . . . , x[t], . . . , x[∞]} where x[i] ∈ [xmin, xmax] and a constant discount γ. The return of this signal starting at
a time step t is V [t] =

∑∞
k=0 x[k]γ[k − t] where γ[k] = γk−1 for k >= 1 and 0 otherwise. This framing of the return is

slightly different from the typical presentation. Specifically, we reinterpret the return as a convolution beteween γ and x 1

and shift the discount sequence over the sensor readings. This implicitly defines an infinite sequence of predictions V [t].
In the above equation, if we replace the sequence x with the sequence of predictions V , we get a new set of predictions
and for any number of compositions n we have V n[t] =

∑∞
k=0 V

n−1[k]γ[k − t]. Expanding this equation we can define
the general sequence of effective discounts for n compositions and the corresponding return as

γn[k] =

{
0 if k < n∏n−1

i=1 (k−i)
(n−1)! γk−n

V n[t] =

∞∑
k=0

x[k]γn[k − t]

where γ1[k] = γ[k] defined above and V n[t] is the target of the nth composition at timestep t. For any value n there
are two sequences multiplied together. The original discounting shifted by the number of applications γ1[k − n] and a
diverging series

Qn[k] =

∏n−1
i=1 (k − i)
(n− 1)!

=
Γ(k)

Γ(k − n+ 1)Γ(n)

where Γ(k) = (k − 1)! for k ∈ Z is known as the Gamma function, and can be used to analyze the function with k ∈ R.

We know for any particular application of the convolution γ on a series with known domain [xmin, xmax] the value func-
tion can take values bounded by V 1[t] ∈ [ xmin

1−γ ,
xmax
1−γ ]. This extends to n compositions in a straightforward way where

the range of the value function becomes V n[t] ∈ [ xmin
(1−γ)n ,

xmax
(1−γ)n ]. While normalizing the value function to take values

within in the range [0, 1] has been used in various settings (Schlegel et al. 2021), as we add more compositions we see the
effective range of values shrinking considerably.

Given the effective discounting sequence above, we can begin to piece together the which observations are emphasized
in the predictions. The first 100 steps of the effective discount function for several values of n can be seen in figure 1.
These sequences are normalized to be in the range [0, 1] for a visual comparison. The emphasis becomes increasingly
spread as n increases, with the peak of this function moving further to the future at a consistent rate.

To find the maximum value we take the derivative of the log of the sequence with respect to k getting

δ

δk
ln γn[k] = ψ(k)− ψ(k − n+ 1) + ln γ

where ψ(z + 1) = Hz − C is the digamma function, Hz =
∑z
i=1

1
i ≤

∫ z
1

1
xdx = ln(z) is the Euler harmonic number, and

C is the Euler-Mascheroni constant. Using the approximation above, we can find where we should expect the maximal
value is (to an approximation) k = hn − (h − 1) = h(n − 1) + 1, where h = 1

1−γ is sometimes known as the horizon of
discount γ. Of course this is an approximation from above and the real value falls in k ∈ [h(n− 1), h(n− 1) + 1)].

1In digital signal processing (Oppenheim and Schafer 2010) often the convolution, in this case γ, is mirrored across t and the inifinte
sequence of sensor readings is x = {x[−∞], . . . , x[t], . . . , x[∞]}. The corresponding convolution would be V [t] =

∑∞
k=−∞ x[k]γ[t− k]

which would change how we define the sequence of γ. To be consistent with the reinforcement learning literature, we don’t follow
this here and instead implicitly define γ as the mirrored version and only consider the sequence starting at k = 0.
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Figure 2: (left two) Returns of the multiple sinusoidal oscillator (MSO) synthetic data set with constant and terminating
discount respectively. The gray vertical lines are where the return terminates. (right two) Returns of Critterbot data set
over the light3 sensor with constant and terminating discount respectively.

3 Empirical observations

While we can describe the effective discount for composing constant discount predictions, the same techniques are diffi-
cult to apply to a non time-invariant discount (i.e. state-dependent discounts (Sutton, Modayil, et al. 2011; White 2015)).
Instead, in this section we look at the ideal returns of various signals using constant discounting and a terminating dis-
counting functions. We use three datasets moving from highly synthetic to real-world robot sensori-motor data. The
goal of this section is to show the non-intuitive behavior of compositions to motivate further analysis and exploration.
All code can be found at https://github.com/mkschleg/CompGVFs.jl. Below γ = 0.9 unless otherwise stated.

The first series is based off the cycle world, where the agent observes a sequence of a single active bit followed by 9
inactive bits, where the length of the sequence is m = 10. The cumulant is the observation itself, and in this report we
learn using TD(λ = 0.9) with learning rate α = 0.1 and an underlying tabular representation where each component is
the place in the sequence. We learn two chains of compositions. The first is that of the continuous discounting described
above, and the second is a series of discounts which terminate (i.e. γ[t] = 0) when the observation is active. The
predictions of a single run can be seen in figure 1. For the constant discount, as the number of compositions increases we
see the prediction sequence converge to what looks to be a sinusoid with frequency of 10, and amplitude driven by the
analysis above. We expect this to be the case following from the central limit theorem. For the terminating discount, the
wave form is more interesting. The first layer of predictions look very similar to the constant discount with amplitude
shifted by γm

1−γm . But as there are more compositions the effect seems to be the prediction is at its height farther away
from the active bit. As the agent gets closer to the observation, the sequence of summed values is shorter leading to
smaller values. Given the sequence we use it is easy to mistake this as the agent creating a trace of the cumulant, but we
must remember the prediction is about future cumulants.

Next we use a subset of the Critterbot dataset (Modayil et al. 2014; White 2015), focusing on light sensor 3. This gives
a sequence of spikes similar to the cycle world sequence and a long pause in-between consistent saturations of the light
sensor. We are able to see with the current setting the predictions look more like shifted and spread spikes. But with
many more compositions, the return reverts to a similar form as before. The terminating discounts (with termination at
sensor saturation x[t+ 1] > 0.99) provides a nice demonstration of how the returns are predicting the signal, just with a
decaying prediction instead of the usual growing prediction. The results are similar in the multiple sinusoidal oscillator
(Jaeger and Haas 2004). We use a slightly different terminating discount where the return terminates when the previous
normalized prediction is yn−1[t + 1] > 0.9 rather than when the observation is saturated. While there are decays as the
MSO sequence peaks, as we increase the depth of the composition, these periods are less frequent. Deep compositions
may indicate parts of the sequence where there are fewer saturations in the original sequence.

4 Future Directions

This work suggests a number of interesting research directions and questions. While we mostly analyzed the sequence
on discrete steps and applications of the filter, the general form does lend itself to continuous and complex values of
n and k. In a similar vein, we focused on real valued exponential discounting while several discounting schemes exist
which could be applied to our formulation. We are particularly interested in complex discounting (De Asis et al. 2018)
and hyperbolic discounting (Fedus et al. 2019). Applying a diverse set of discounting schemes in compositions provide
an interesting way to extend the power of value functions while maintaining learnability through efficient algorithms
like temporal-difference learning.

The approach used in this paper is unable to analyze state-dependent discount functions. One way around this might be
in analyzing truncated sequences and taking an expectation over a distribution of sequence lengths. This might lead to a
expected effective discounting sequence, but how this will interact with an underlying Markov process is unclear. This
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is an important next step for understanding the effects of compositions in general value functions, and could also help
in analyzing off-policy compositions.

Finally, the return can be re-interpreted as a convolution over the infinite sequence of observations. While this inter-
pretation was only used to better the notation in this manuscript, further connections to convolutions and digital signal
processing should be explored. Better filter designs might inspire different discounting schedules to squeeze more infor-
mation from the data stream. We also have only analyzed these convolutions in the time domain. The frequency domain
might give us more insight into how consistent signals like the cycle world dataset will be effected by compositions.
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