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1 Introduction

A reinforcement learning agent’s representation of its world is critical to maximizing its return, sum
of discounted reward, in an environment. This is particularly important under partial observablity
where the observations of the environment are typically insufficient for learning. There have been
several mechanisms developed to build representation, or state, under the constraints of partial
observability. One method is to keep a history, where the environment is assumed markov given
sufficient length of history. The agent can also maintain a distribution over a proposed set of
states as in a partially observable markov decision process (POMDP). Another promising approach
is to build state through a predictive representation, as in Predictive State Representations (PSR)
[1, 10], Temporal-Difference (TD) networks [11], and General Value Function (GVF) networks [8].
A representation built from predictions is appealing because each predictive unit can be learned
through interactions with the world, and the units naturally provide temporally extended meaning
to the representation. A predictive representation can also expand and modify the set of predictive
units, allowing the agent to continually improve its understanding of the world. GVF networks are
particularly appealing because they propose a familiar language for defining predictive questions, and
they can be trained using standard reinforcement learning algorithms [12, 14].

A common problem in using predictive representations is in the specification of the predictive units.
A discovery system addresses this problem directly, by enabling an agent to propose predictive units
independently of an expert. There are several characteristics of an effective approach to discovery
such as maintaining stability of the current representation, effectively removing dysfunctional or not
learnable predictive units, and providing a representation which is generalizable to use with new tasks.
There have been several approaches to discovering core tests in a PSR [4, 16], and the nodes of a TD
network [3]. Extensions of these approaches to GVF networks should be considered in future work.

In this work we describe a general framework for discovery in GVF networks, and define a simple
variant to act as a baseline for future work. We also provide a demonstration in compass world, a
partially observable domain, to evaluate the components of the system.

2 Background

The dynamics of the environment are modeled as a markov decision process with state space S € R,
actions A € R®, and transition probabilities P = S x A x S — [0,00). On each step the agent
is presented with an observation o, € O C R%, which are determined by a lossy function of the
underlying state o, = o(s;),s; € S. The agent takes an action a; € A given an observation
and receives a new observation corresponding to the new underlying state. The goal of an agent
under partial observability is to find a state representation h; € R™ through interactions with the
environment to enable the learning of other tasks.

We use the generalized form of value functions [13, 5] as the base predictive units of a predictive
representation. A general value function (GVF) [13, 14] is defined by a cumulant, policy, and
continuation function. The cumulant ¢ € R can be any signal (internal or external) available to
the agent. We use the usual definition of a policy where w(a;|o;) € [0,1] is the probability of
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Figure 1: (left) Pruning predictive units occurs every million steps with no regeneration o =
0.001, A = 0.9,¢ = 0.1, 0% = 1 (right) Learning curves of the evaluative GVFs N = 1000000, ¢ =
0.1, = 0.001, A = 0.9,n = 100.

taking an action a; given the current observations o,. The continuation function is a function
Ve = fy (ot, at, 0¢41) € [0, 1] [15] determining the horizon (or temporal distance) of the prediction.
A GVF network [8] is a network of n interconnected GVFs that recurrently use previous predictions
as a form of state. We can define the state update function h; = (6o, ht_ﬂT) € R™, where
6 € R™™ is the weight matrix with each row representing a specific GVF. There are several
algorithms which can be used to learn the weights of a GVF network ranging from simple TD(0) to a
fully recurrent gradient algorithm using back propagation through time [9, 8]. Here we simply use
off-policy semi-gradient TD()).

3 A framework for discovery in GVF Networks

We base the structure of our framework for discovery on prior methods of representation search [2]
focusing on two main components: an evaluator, and an generator. The evaluator determines which
predictions should be removed to make room for new proposals, and determines when predictions
should be tested. The generator is responsible for proposing new questions for the predictive
representation. These components act in a cycle, continuously proposing new questions and pruning
infrequently used or not learnable predictions. One variant of the two aforementioned components is
a random generator, and an evaluator based on magnitude of weights. The generator proposes new
GVFs from a set of policies, cumulants, and continuation primitives. These primitives are described
fully in appendix A.2. The evaluator measures the usefulness of a GVF based on the magnitude of its
corresponding weight in the external tasks. We evaluate all the predictive units every N € N steps
and prune the 0 < ne < n least useful GVFs where ¢ € [0, 1]. Pseudo code for this evaluator can be
found in appendix A.1.

4 Experiments

We evaluate the performance of our system on two experiments in compass world [7]. Both exper-
iments use five evaluative GVFs that are not learnable through the observations. These questions
correspond to a question of “which wall will I hit if I move forward forever?” The first experiment,
figure 1 (left), provides a check to ensure the evaluation strategy targets dysfunctional representational
units for removal. We initialize the GVF network with 200 GVFs: 45 used to form the expert crafted
TD network [7], and 155 defective GVFs predicting noise ~ N(0,02). We report the learning
curve and pruned GVFs over 12 million steps. The second experiment, figure 1 (right), uses the full
discovery approach to find a representation useful for predicting the evaluation GVFs. We report the
learning curves of the evaluative GVFs over 100 million steps.

While this baseline performs surprisingly well in the demonstrations, there is ample room for
improvement. Primarily, the random generation strategy does not take into account the current set of
proposed predictions, potentially resulting in redundancy. A more principled method would look to
generate a wide variety of predictions dependent on the current set of predictions, proposing a diverse
set of predictive units. Unfortunately, measuring how related questions are from their specification is
not particularly straightforward. Another issue is the proxy used to determine a predictions usefulness.
Currently, the system will potentially cut predictions which are useful for the internal representation.
This could harm of the predictive state or cause other instabilities within the GVF network.
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A Approach to Discovery

A.1 Evaluation

To evaluate the usefulness of a predictive unit we look at the magnitude of the associated weight in
the tasks using the predictive representation. See algorithm 1 for the pseudo code.

Algorithm 1 Evaluator

Input: 0 € R, k = number of tasks, e € [0, 1], » = number of predictive units
1:6=3"_10,];0 e R™
2: fori <nedo
j = argmin{6}
if j is associated with a GVF € GVF Network then
prune GVF

oohw

A.2 GVF Primitives

To enable generation of GVFs for this discovery

approach, we introduce GVF primitives. The

goal is to provide modular components that can Evaluator eauaion cvrs roaT T
be combined to produce different structures. For Vi — | R |
example, within neural networks, it is common | GV{; \
to modularly swap different activation functions, e Gvim i &If
such as sigmoidal or tanh activations. For net- — rEae=a ! (—
works of GVFs, we similarly need these basic v | 1 VR |
units to enable definition of the structure. = i [ — E

We propose basic types for each component of | (pgol L, min(@;,j)
the GVF: discount, cumulant and policy. For dis- tattaiattal

counts, we consider myopic discounts (v = 0), Generator GVFN
horizon discounts (y € (0, 1)) and termination Prototypes _—
discounts (the discount is set to v € (0, 1] every- Cumulants T |Coe
where, except for at an event, which consists of a Continuations <| ]

transition (o, a, 0’)). For cumulants, we consider Policies i

stimuli cumulants (the cumulant is one of the

observations, or inverted, where the cumulant  Fjgure 2: Visualization of discovery approach.
is zero until an observation goes above a thresh-  (*Evaluator*) takes the weights of the evaluation
old) and compositional cumulants (the cumulant - GVFs and measures the usefulness on weight mag-
is the prediction of another GVF). We also in- pjtude. (*Generator*) Randomly generates new

Vestigate random cumulants (the cumulant is GVFs from a set of prototypical parameter func-
a random number generated from a zero-mean tjgps.

Gaussian with a random variance sampled from

a uniform distribution); we do not expect these

to be useful, but they provide a baseline. For the policies, we propose random policies (an action is
chosen at random) and persistent policies (always follows one action). For example, a GVF could
consist of a myopic discount, with stimuli cumulant on observation bit one and a random policy.
This would correspond to predicting the first component of the observation vector on the next step,
assuming a random action is taken. As another example, a GVF could consist of a termination
discount, an inverted stimuli cuamulant for observation one and a persistent policy with action forward.
If observation can only be ‘0’ or ‘1’, this GVF corresponds to predicting the probability of seeing
observation one changing to ‘0’ (inactive) from ‘1’ (active), given the agent persistently drives
forward.

B Experiments on discovering GVF networks in Compass World

We conduct experiments on our discovery approach for GVF networks in Compass World [6], a
partially observable grid-world where the agent can only see the colour immediately in front of it.



There are four walls, with different colours; the agent observes this colour if it takes the action forward
in front of the wall. Otherwise, the agent just sees white. There are five colours in total, with one
wall having two colours and so more difficult to predict. The observation vector is five-dimensional,
consisting of an indicator bit if the colour is observed or not.

The GVFs for the network are generated uniformly randomly from the set of GVF primitives. Because
the observations are all one bit (0 or 1), the stimuli cumulants are generated by selecting a bit index ¢
(1 to 5) and then either setting the cumulant to that observation value, o;, or to the inverse of that value,
1 — o0;. The events for termination are similarly randomly generated, with the event corresponding
to a bit o; flipping. The nonlinear transformation used for this GVF network is a clipping function.
Every two million steps, the bottom 10% of the current GVFs are pruned and replaced with newly
generated GVFs. Results are averaged over 5 runs.

Figure 1 (right) demonstrates that TD(\) with randomly generated GVF primitives learns a GVF
network—and corresponding predictive representation—that can accurately predict the five evaluative
GVFs. The results show that the discovery approach is continually making the representation better for
the evaluative GVFs. The discovered predictions outperform an initial random set, and significantly
outperform a representation with no predictions.

B.1 Pruning random GVFs in Compass World

As we can see in figure 1 (left), TD()\) does remove the dysfunctional GVFs first, and when the expert
GVFs are pruned the representation isn’t significantly damaged until the penultimate prune. These
results also show how pruning dysfunctional or unused GVFs from a representation is not harmful to
the learning task. The instability seen in the ends of learning can be overcome by allowing the system
to generate new GVFs to replace those that were pruned and by pruning a small amount based on the
size of network used as a representation.



