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Abstract
The objective of continual learning is to build agents that continually learn about their world, building on prior
learning. In this paper, we explore an approach to continual learning based on making and updating many
predictions formalized as general value functions (GVFs). The idea behind GVFs is simple: if we can cast
the task of representing predictive knowledge as a prediction of future reward, then computationally efficient
policy evaluation methods from reinforcement learning can be used to learn a large collection of predictions
while the agent interacts with the world. We explore this idea further by analyzing how GVF predictions can
be used as predictive features, and introduce two algorithmic techniques to ensure the stability of continual
prediction learning. We illustrate these ideas with a small experiment in the cycle world domain.

1. Introduction
Continual learning is an approach to achieving the long-standing goals of artificial intelligence research:
building agents that can know a lot about the world and use that knowledge to flexibly achieve goals. The main
idea behind continual learning is to leverage an unending stream of experience—a life-time—continually
building on prior learning. In this paper, we explore an approach to continual learning based on making and
updating many predictions about the data generated by an agent’s interaction with the world.

This predictive approach has a long tradition in machine learning, starting with predictive state repre-
sentations (PSRs). A PSR summarizes everything the agent knows about the world as a large collection of
predictions about the probability to different sequences of actions and observations occurring (Littman et al.,
2001). Given a minimal set of core tests and their probability of success, the agent can generate the probability
of success of any other test—the agent’s state representation is entirely composed of predictions. A PSR uses
a finite set of prediction to model partially observable tasks, rather than storing potentially infinite history
of observed data. PSRs have several important limitations. Most notably, PSRs are restricted to predicting
non-continuous observations (Singh et al., 2003; James and Singh, 2004; Wiewiora, 2005; McCracken and
Bowling, 2005; Wolfe et al., 2005; Bowling et al., 2006; Wolfe and Singh, 2006), and algorithms for learning
the predictions suffer from numerical issues limiting their application to small finite state domains. Exten-
sions to continuous observations have been restricted to linear PSRs (Rosencrantz et al., 2004; Rudary et al.,
2005; Wingate and Singh, 2006; Boots et al., 2011), using approaches from subspace identification which
have issues with scalability.

Temporal difference networks (TD-nets) (Sutton et al., 2005) take the predictive approach a step further
with several important innovations compared with PSRs. TD-nets enable learning from and about continuous
observations. TD-nets also enable learning compositional predictions: making predictions about the outcome
of other predictions. Like PSRs, TD-nets enable predictions to be used as state, while TD-nets with options
allow predictions to be made about the outcomes of multi-step options (Rafols, 2006). There is still plenty
of room to build upon the predictive approach to continual learning. TD-nets use a specialized learning rule
that can diverge under off-policy sampling, and in practice the error in the predictions can oscillate wildly.
In order to improve stability, Silver (2012) introduced a recurrent neural network variant of TD-nets using
gradient TD to update the weights.

Recently, generalized value functions have been proposed as an alternative representation scheme to TD-
nets. In particular, we can replace the scalar discount factor used to define conventional value functions
with a state-based continuation function, and simply allow the reward function to be any observable signal.
This simple generalization allows complex predictions to be learned using simple and robust value function
learning algorithms from reinforcement learning, as opposed to the specialized learning rules required for
TD-nets. Value function learning algorithms require only linear computation and storage per prediction, are
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guaranteed to converge, are compatible with linear and non-linear function approximation, and are well suited
to learning in non-stationary environments. A collection of GVFs can emulate predictive state representations
by simply using each GVF’s prediction as input to the feature construction process (White, 2015).

In this short paper, we introduce an explicit stabilization layer to a collection of GVFs, resulting in a
simple and flexible architecture. The stabilization layer adapts parameters to produce stable features from
inputted predictions, rather than adjusting the predictions themselves to improve stability. Decoupling these
two roles ensures that predictions do not need to balance between accuracy and utility as a feature. We
introduce an extension of the GTD(λ) algorithm to include clipped elastic regularization. We illustrate the
utility of our architecture with a small experiment in the cycle world domain.

2. Problem formulation
We model the interaction between an agent and its environment as a Markov decision process (S,A,T, r),
where S denotes the set of states, A denotes the set of actions, and T : S ×A×S → [0, 1] encodes the one-
step state transition dynamics. On each discrete time step t = 1, 2, 3, ..., the agent selects an action according
to its behavior policy,At ∼ µ(·|St), and the environment responds by transitioning into a new state St+1.The
agent cannot directly access the state, but instead observes a vector, ot+1 ∈ Rm, that provides incomplete
information about the current state.

On each transition the agent observes a cumulant, Zt+1
def
= z(St, At, St+1). The cumulant can be any

real-valued signal that the agent can observe, such as a sensor reading or feedback generated by a person. The
cumulant is used to define a multi-step prediction target Gt ∈ R, where Gt

def
=

∑∞
k=0

(
Πk
j=1γt+j

)
Zt+k+1.

The continuation signal γt+1
def
= γ(St, At, St+1) specifies the horizon of the prediction. Given this definition

of Gt, we can specify a general value function (GVF) v(s) = Eµ[Gt|St = s], where v : S → R. We can
cast the task of learning multi-step predictions as one of estimating a value function, where the prediction on
time-step t is simply Vt ≈ v(St). Any prediction that can be represented with a TD-net can be expressed as
one or more GVFs. Due to space restrictions we direct the reader to prior work detailing the specification and
expressiveness of GVFs (Sutton et al., 2011; White, 2015).

Assuming a linear approximation of the value function, we can estimate these GVFs while interacting
with the world using temporal difference learning algorithms such as the GTD(λ) algorithm (Sutton et al.,
2009b,a; Maei et al., 2009; Maei, 2011):

δt = Zt+1 + γt+1w
>
t xt+1 −w>t xt

et = ρt(λtγtet−1 + xt) . ρt
def
= π(St, At)/µ(St, At) is the importance-sampling weight

wt+1 = wt + αδtet − αγt+1(1− λt+1)(e>t ht)xt+1

ht+1 = ht + αh[δtet − (x>t ht)xt] . auxiliary weights,

where the feature vector xt ∈ Rd is constructed based on everything observable to the agent, and the predic-
tion is linear in the features: Vt

def
= x>t w. The cumulant here plays the same role as the reward in conventional

RL, but the cumulant is not necessarily maximized by the control policy µ. The objective of the agent is to
learn many GVFs in parallel. Each GVF specifies a predictive question (indexed by 0 ≤ i ≤ n): if the agent
selected actions according to target policy π(i), what would be the expected future sum of cumulant values,
Z(i), with a prediction horizon specified by γ(i).

3. Stabilizing predictive feature learning
We explore how a collection of GVFs can be connected to incorporate both predictive features and an explicit
stabilization layer. The architecture consists of three repeated components: (1) predictions from the previous
time step feed in as inputs to the construction of the state, (2) the stabilization layer nonlinearly transforms
those predictions to produce features and add regularization; and (3) the predictions for the current time step
are outputted (to then feed in as inputs for the next time step). The first part of the proposed stabilization
layer performs an expansion with a nonlinear encoding that has outputs between zero and one, such as tile
coding, Fourier basis or radial basis functions. This component provides a simple approach to manage the
magnitude of the predictions: even if prediction begin to diverge, the encoding maps this value to bins with
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Figure 1 (LHS): The inputs pass through a nonlinear expansion, such as tile coding, producing the feature vector x. Note
the different time-step on the observations, and predictions used to construct x. The feature vector is weighted linearly to
produce the next set of predictions. An adaptive regularization weight, based on long-term statistical properties of both
the predictions and observations, is added to the computation of each prediction.

Figure 1 (RHS): Cycle world results. Above we plot (1) the error averaged over of the one-step, two-step, up to
six-step cycle world predictions in black, (2) the error of the prediction of expected number of steps until observing
a “1” in red (GVF #7), and (3) the average of all the weights on the predictive features generated from GVF #7’s
prediction. During phase one of the experiment GVF #7 is not allowed to learn; it was set equal to a random number.
Our regularization scheme prevented GVF #7’s erratic prediction from causing the other predictions to destabilize.
Nevertheless, the first six GVFs did not obtain good accuracy. In the second phase of the experiment, starting at step
50,000, we allowed GVF #7 to update. The regularization scheme then allowed the other GVFs to incorporate (through
the construction of x) the information summarized in GVF #7’s prediction, and all GVFs converged to zero prediction
error.

fixed magnitude. This encoding has the additional benefit of improving modeling capabilities, providing a
nonlinear transformation that is more powerful than typical smooth activation functions.

The adaptive regularization component is our second line of defense against unstable learning, moderating
highly variable predictions and removing less useful features. An adaptive regularization parameter can be
set for each prediction, given a measure of learning variability or inaccuracy for each feature. We add a
regularizer R(Hw) to the objective, for regularization function R : Rd → R+ and H ∈ Rd×d a diagonal
matrix with regularization weights ηi ≥ 0 on the diagonal.

It is straightforward to modify the GTD(λ) updates to incorporate this regularizer. GTD(λ) minimizes
the mean-squared projected Bellman error (MSPBE); to incorporate regularization, we simply need to add a
regularizer to this objective for the updates. To add regularization, w is updated with the standard GTD(λ)
update and then updated according to the given regularizer. For a smooth regularizer, the update is w← w−
αH∇R(Hw) and for a non-smooth regularizer (Mahadevan et al., 2014), the update is w← proxαR(H·)(w)

where the proximal operator for function αR(H·) is proxαR(H·)(w)
def
= arg minu

1
2‖u−w‖22 + αR(Hu).

We propose to use a clipped elastic net regularizer, which promotes removing problematic features. The
clipped regularizer is defined as c(w) =

∑d
i=1 ηi min(ν|wi|+ (1− ν)w2

i , ε), for some ε > 0 and ν ∈ [0, 1].
The clipped regularizer avoids the typical shrinkage properties of `p norms—which can incur significant
bias—because values of |wi| + w2

i above ε are not penalized additionally. Instead, particularly with the
inclusion of the `1, the regularization mainly performs feature selection, zeroing less useful features. The `2
regularizer is strongly convex and can significantly speed the convergence rate. The proximal operator1 is

proxαc(w)i =

{
wi : ν|wi|+ (1− ν)w2

i ≥ ε
sign(w̃i) max(|w̃i| − ναηi, 0) : otherwise, with w̃i = (1− 2(1− ν)αηi)wi

We can similarly regularize the second set of weights h, which is learned using the same (potentially
poor) features. This regularization, however, changes the MSPBE. By adding an `2 regularizer to the update
for h, the effect is to modify the covariance matrix E[xtx

>
t ] in the MSPBE to E[xtx

>
t ] + ηI. The solution to

this modified MSPBE is still equal to the TD fixed point, but the learned h is more stable.

1. Theoretical development for proximal operators is typically for convex regularizers; the clipped regularizer, however, is nonconvex.
Nonetheless, the proximal gradient update can be applied because our proximal operator has a unique solution (Yu et al., 2015).
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4. Experiments in cycle world
We conducted our empirical study on the cycle world, a domain known to exhibit unstable learning for
one-step TD-nets. There are six states arranged in a ring, and on each time-step the agent deterministically
transitions clock-wise to the next state. The observation of “1” is available in one of the states, in all other
states, the observation is “0”. The agent makes six predictions: the probability of observing “1” on the next
time step, in two time steps, and so on. These predictions can in principle be represented by a conventional
one-step TD-net without history2, but in practice learning results in instability and inaccurate predictions
(Tanner and Sutton, 2005).

We specified six GVFs, one for each of the cycle world predictions. The one-step prediction used a
constant continuation γ(1)t+1 = 0, and Z(1)

t+1 = ot+1. The two-step prediction requires a compositional GVF:
γ
(2)
t+1 = 0, and Z

(2)
t+1 = V

(1)
t+1, where V (1)

t+1 is the prediction made by the one-step GVF. The three-step
prediction was also compositional, depending on the two step prediction: γ(3)t+1 = 0, and Z(3)

t+1 = V
(2)
t+1. The

other the three GVF’s are specified similarly. In addition we added a multi-step (non-zero γ) prediction, which
is easy to learn and useful for obtaining good prediction accuracy on the other six GVF questions (through
the feature vector, see Section 3). The final prediction encodes the expected number of steps until the “1” will
be observed: γ(7)t+1 = 0 if ot+1 equals “1” and γ(7)t+1 = 1 otherwise, and a constant cumulant Z(7)

t+1 = 1. The
feature vector was constructed by independently tile coding each prediction, resulting in a binary x with 514
components (one bit for the observation and a bias unit), of which 258 were always active. The cycle world
is a uncontrolled (single-action) Markov reward process so the predictions are learned on-policy.

We performed a simple experiment to illustrate the simplicity of posing GVF questions, and to highlight
the stability properties of our architecture. The experiment was divided into two phases. During the first phase
V (7) was not allowed to update, and we set V (7)

t+1 equal to a random number. After 50,000 steps of training we
allowed V (7) to update normally. Figure 1 (RHS) summarizes the results of our experiment. The results are
averaged over 100 independent runs of the experiment, and window averaged with a window size of 1000.

The results highlight several simple but important points. During phase one, the error of the first six
predictions (black line) quickly plateaus well above zero, because the predictions are inaccurate. During this
phase the V (7)

t+1 is random (red line), and thus the regularization scheme keeps the weights of all the features
constructed from V (7) near zero (blue line). This prevents V (7)’s inaccurate prediction from destabilizing the
other predictions. In the second phase, we see V (7) learns quickly and it’s influence on the other predictions
rises (increase in blue line). Once the V (7) becomes reasonably accurate (but not yet zero error), it becomes
a useful predictive feature and the error of the remaining predictions quickly reduces to zero. The use of a
clipped regularizer sufficiently reduced bias and enabled prediction error to decrease to zero. The use of tile
coding significantly increased the convergence rate in phase 2—a factor of three speedup.

Either form of stabilization—non-linear expansion through tile coding or regularization—were sufficient
to learn in our experiment, though using both improved learning speed significantly. However, without the
predictive features constructed from V (7), the other six predictions could never obtain reasonable accuracy.
Our experiment provides a modest demonstration of one of the main ideas of continual learning: expanding
the representation with predictive features is essential for efficient learning.

5. Future work
Our experiments demonstrate that our proposed architecture can improve the stability of prediction learning,
but theoretical questions remain. The conventional notion of convergence is not suitable for continual learning
where learning is never meant to end, and the agent should be tracking (Sutton et al., 2007). The regret
formalism, could provide a mechanism for analyzing our proposed learning algorithms. Even this formalism,
however, often considers a single best weighting across experts in hindsight, or does not consider the direct
impact of this learned weighting on the experts (features). A new analysis paradigm may be needed to quantify
sound learning for predictive representations, and more widely for continual learning.

2. Learning in cycle world can be also be achieved by adding a form of eligibility traces to the TD-net learning rule or using the
recurrent neural network architecture of Silver (2012) .
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